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Abstract. In this paper, we explore properties of the Gray-Thornton model for particle size segregation in granular
avalanches. The model equation is a single conservation law expressing conservation of mass, driven by shear and grav-
ity, for the concentration of the smaller of two types of particle in a bidisperse mixture. Sharp interfaces across which the
concentration jumps are shock wave solutions of the partial differential equation. We show that they can form internally from
smooth data, as well as propagate in from boundaries of the domain. We prove a general stability result that expresses the
physically reasonable notion that an interface should be stable if and only if the concentration of small particles is larger
below the interface than above. Once shocks form, they are sheared by the flow, leading to loss of stability when an interface
becomes vertical. The subsequent evolution of a mixing zone, a two-dimensional rarefaction solution of the equation that
replaces the unstable part of the shock can be tracked explicitly for a short time. We conducted experiments to test the contin-
uum model against real flow in a Couette geometry, in which a bidisperse mixture is confined in the annular region between
concentric vertical cylinders. Initially, the material is placed in the annulus with a layer of large particles below a layer of
small particles. The sample is then sheared by rotating the bottom confining plate, while a heavy top plate is allowed to move
vertically to accommodate Reynolds dilatancy. Comparison to predictions of the model show reasonable agreement with both
the mixing and resegregation rates. However, the model naturally fails to capture short-time dilatancy, finite size effects, or
three-dimensional effects.
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INTRODUCTION

Granular materials have a tendency to segregate by size when set in motion. The classic paper of Savage and Lun [10]
gives an explanation of this phenomenon for a bidisperse mixture of particles of different size but the same density, in
the context of steady chute flow. The Savage and Lun model is based on quantifying the mechanisms of kinetic sieving
and squeeze-expulsion. More recently, Gray and Thornton [4] formulated a time-dependent continuum model using
mixture theory, incorporating the crucial role of gravity in kinetic sieving.

In this paper, we consider the Gray-Thornton model in two space variables (x,z), and time t, where x corresponds
to distance down an incline, and z is a height variable, so that gravity is in the direction of decreasing z. The model
is a scalar conservation law describing the evolution of the concentration ϕ(x,z, t) of small particles as the material is
sheared by a given depth-dependent velocity u(z) in the x-direction. The concentration ϕ is the fraction of the solid
material consisting of small particles, so that 1−ϕ is the concentration of large particles. The velocity u(z), assumed
to be time-independent, transports particles down the slope, and induces segregation through the shear rate u′(z). The
Gray-Thornton equation takes the form

ϕt +u(z)ϕx +(Sϕ(ϕ−1))z = 0, −∞ < x < ∞, −1 < z < 1, t > 0, (1)

In this equation, segregation is driven by the normal velocity of small particles, taken to be proportional to the
concentration 1−ϕ of large particles. The constant of proportionality S is a segregation rate and sets the time scale. In
avalanche flow, the parallel velocity u(z) is roughly linear, and a constant segregation rate is a reasonable assumption.
However, for shear induced through a boundary, such as provided by a moving confining plate, the velocity is known
to be more closely exponential than linear [9]. In this circumstance, segregation occurs significantly faster in regions
of high shear than in those with low shear rate, so that S is properly taken to be a function of z.

Properties of equation (1) and related models have been explored in a series of papers [3, 8, 12]. Equation (1) is a
simple macroscopic model for segregation, a complicated dynamic process at the grain diameter scale. Moreover, it is
a continuum model that seeks to approximate fluid-like flow of a granular material in a context in which flow typically
occurs only within a depth of a small number grains. Nonetheless, the model captures several features of segregation
under shear.



The scalar equation (1) has some unusual features that create novel solution patterns. The structure of the equation
is that it transports particles parallel to the x-axis with a speed that is linearly depth dependent, giving a non-constant
coefficient in the transport term. As a consequence, characteristics are curved. A more subtle effect of the non-
constant coefficient is seen on shock waves. These are interfaces in space-time across which the solution has a jump
discontinuity. We show in this paper that shocks are stable if there is a greater concentration of large particles above
the shock than below. The novel feature that appears in solutions is that, because of the shearing, stable shock waves
can become vertical, and then lose stability. The emerging solution structure is still not fully understood, but in this
paper we report on some progress in understanding what happens immediately after the shock loses stability.

In [6, 7], we considered equation (1) with exponential function u(z) and S(z) = s|u′(z)|. However, we restricted
attention to solutions independent of x, mimicking conditions in a Couette cell in which layers of large and small
particles are sheared by rotating a lower confining plate. In the final section of this paper, we summarize results from
analysis of this modified equation, and comparison to experimental results. Considering that the model is very simple,
and does not account for finite size effects, it is remarkable that it can capture qualitative features of mixing and
resegragation in the experiments. With only one free parameter (setting the time scale), the model is able to achieve
agreement with the different rates of mixing and segregation quantified in the experiment.

In the next section, we consider a general equation

ϕt +u(z)ϕx +(S(z) f (ϕ))z = 0, −∞ < x < ∞, −1 < z < 1, t > 0, (2)

Here, f (ϕ) models segregation normal to the x-axis. We assume it is a smooth convex function on the interval
0 ≤ ϕ ≤ 1, with f (0) = f (1) = 0, consistent with the idea that the normal flux of small particles should be zero
if there are either no large particles or no small particles at that location.

CHARACTERISTICS AND SHOCKS

In this section, we present the basic building blocks of solutions of equation (2), and prove a very general stability
result. We write equation (2) as

ϕt +u(z)ϕx +S(z) f ′(ϕ)ϕz =−S′(z) f (ϕ) (3)

If the solution ϕ(x,z, t) = ϕ0 is known at the point x = x0,z = z0, and time t = t0, then the PDE shows how to continue
the solution to t > t0, by tracing the solution along characteristics, given by the ODE system

dx
dt

= u(z);
dz
dt

= S(z) f ′(ϕ);
dϕ

dt
=−S′(z) f (ϕ);

x(t0) = x0; z(t0) = z0; ϕ(x0,z0, t0) = ϕ0.

(4)

Since the final two ODE are independent of x, they form a vector field in the (z,ϕ)-plane, with a first integral:

S(z) f (ϕ) = const. (5)

In particular, when ϕ = ϕ(z, t) is independent of x, this equation is a useful representation of characteristics.
Shock waves are smooth surfaces z = ẑ(x, t) across which ϕ(x,z, t) has a jump discontinuity. Let ϕ±(x, t) =

ϕ(x, ẑ(x, t)±, t). Since equation (2) is in divergence (i.e., conservative) form in space-time, the normal component
of the divergence-free function (ϕ,u(z)ϕ,S(z) f (ϕ)) is continuous across the shock:

ẑt [ϕ]+ ẑxu(ẑ)[ϕ]−S(ẑ)[ f (ϕ)] = 0. (6)

Here, we have used the normal (ẑt , ẑx,−1) at the shock; the notation [g(ϕ)] = g(ϕ+)−g(ϕ−)] signifies the jump of a
function g(ϕ) across the shock. Consequently, the evolution of the shock, coupled to that of the weak solution ϕ(x,z, t)
on either side of it, is given by the PDE

ẑt +u(ẑ)ẑx = S(ẑ)G(ϕ+,ϕ−), (7)

where

G(ϕ+,ϕ−) =


f (ϕ+)− f (ϕ−)

ϕ+−ϕ−
, ϕ+ 6= ϕ−

f ′(ϕ−), ϕ+ = ϕ−.

(8)



This equation can be solved by the method of characteristics, once ϕ±(x, t) are known. More generally, these functions
are found in conjunction with the evolution of the shock wave, as in [1]. To assess stability of the shock in the sense of
hyperbolic conservation laws, we use the Lax entropy condition which ensures that, for a given initial condition with
a shock, the solution can be continued at least for a short time with the same structure. That is, the solution ϕ evolves,
and the shock evolves with it. The Lax entropy condition stipulates that the shock is stable if the characteristic surfaces
that would emanate from points on the shock immediately overlap. As a consequence, the solution would be double-
valued in the overlapping region, but in fact well-posedness is recovered by constructing a shock lying within the
region, and satisfying (7). This construction is standard in the hyperbolic equations literature [11] when the solution is
constant along characteristics; it corresponds to structural stability (i.e., short-time persistence) of the solution rather
than the asymptotic (i.e., long-time) stability, commonly referred to in dynamical systems.

Stability of shocks

Since ϕ is not constant along characteristics, the treatment of stability is not completely standard. Nonetheless, for
a stable shock, the two characteristic surfaces in space-time overlap, and the single-valuedness of the solutions has to
be recovered by continuing the shock into this region.

We suppose there is a shock wave z = ẑ(x, t), with well-defined values of ϕ on either side at time t = t0. Let
ϕ0
±(x) = ϕ±(x, t0).

Theorem 1 The interface z = ẑ(x, t) is dynamically stable if ϕ0
+ < ϕ0

−; it is unstable if ϕ0
+ > ϕ0

−.

Proof: The idea of stability is that the characteristic surfaces generated by characteristics orginating on the shock
at time t = t0, with initial conditions ϕ = ϕ0

±, should overlap for small t > t0, so that a shock can be fit in between,
satisfying the Rankine-Hugoniot condition. To verify this condition, we calculate the speeds of the two characteristic
surfaces, and of the shock, normal to the shock at time t = t0. The normal N̂ to the shock z = ẑ(x, t) is given by

N̂ = (−ẑx,1)/(1+ ẑ2
x)

1/2. (9)

The characteristic speeds λ± normal to the shock are given by

λ± = (x′,z′).N̂, (10)

where x′(t),z′(t) are given by the characteristic equations (4). Thus,

λ± =
1

(1+ ẑ2
x)1/2

(
−u(ẑ)ẑx +S(ẑ) f ′(ϕ±)

)
. (11)

The velocity of the shock at fixed x = x0 is given by (ẋ, ż) = (0, ẑt). Thus, the normal speed σ is given by

σ = N̂ · (ẋ, ż) = ẑt/(1+ ẑ2
x)

1/2. (12)

Now, ẑ(x, t) satisfies the PDE (7), so that

ẑt =−u(ẑ)ẑx +S(ẑ)G(ϕ+,ϕ−).

Substituting into (12), we find

σ =
1

(1+ ẑ2
x)1/2 (−u(ẑ)ẑx +S(ẑ)G(ϕ+,ϕ−)) . (13)

Comparing (11) and (13), we see that, from convexity of f (ϕ), λ− > σ > λ+ is equivalent to ϕ+ < ϕ−, as claimed.

Shock formation

In this section, we examine the tendency of shocks to form in the interior of the flow. Shock formation is associated
with finite-time blow-up of the gradient of the solution, so that the slope of the graph becomes infinite as a shock forms.



Thus, it makes sense to examine the evolution of the gradient ∇ϕ(x,z, t) = (ϕx,ϕz) in a smooth solution ϕ(x,z, t). We
do this by differentiating the PDE (2) with respect to x and z :

dv
dt

=−S(z) f ′′(ϕ)vw−S′(z) f ′(ϕ)v (14a)

dw
dt

=−u′(z)v−S(z) f ′′(ϕ)w2−2S′(z) f ′(ϕ)w−S′′(z) f (ϕ). (14b)

The derivatives on the left hand side are along characteristics, but note that both z and ϕ evolve along the characteristics,
so that in general, the system of ODE has to include the characteristic equations. In general, this is a complicated
system to analyze, and complete results are not available. However, we can treat special cases. For the original Gray-
Thornton model, in which u(z) is linear, and S(z) > 0 is constant, a complete characterization of shock formation is
given in [1]. Here, we consider the case of exponential S(z), which is consistent with the experimental configuration
described below. Specifically, we assume

u′(z) > 0; S(z) = seβ (z+1), −1≤ z≤ 1, (15)

with s > 0 constant. We prove the following result.

Theorem 2 Suppose the conditions (15) hold. If ϕ0
x (x0,z0)≥ 0, and ϕ0

z (x0,z0) < 0, then either a shock forms in finite
time, or the characteristic emanating from (x0,z0) reaches a boundary z =±1 before ∇ϕ becomes singular.

Proof: First, observe that the w-axis v = 0 is invariant for equation (14a). In case (a), it follows from the assumption
v(0) = ϕ0

x (x0,z0) > 0, that v(t) > 0 for all t > 0 for which the solution of (14) remains bounded. This is the only
information we need concerning v in case (a) in order to analyze finite time blow-up of w in equation (14b).

Differentiating equation (5), we obtain

S′(z) f ′(ϕ)w =−S′(z)2

S
f (ϕ) (16)

Substituting into equation (14b), we get,

dw
dt

=−S(z) f ′′(ϕ)w2 +
(

S′(z)2

S(z)
−S′′(z)

)
f (ϕ)−u′(z)v <−S(z) f ′′(ϕ)w2, (17)

since v > 0, S′(z)2

S(z) −S′′(z) = sβ 2eβ (z+1) > 0 and f (ϕ)≤ 0. Now z and ϕ are evolving on the characteristic emanating
from (x0,z0), but both S(z) > 0 and f ′′(ϕ) > 0 are bounded from below by positive constants, in the physical domain
−1 < z < 1,0≤ ϕ ≤ 1. Thus, there is k > 0 such that

dw
dt

<−kw2, (18)

at least until the characteristic reaches the boundary.
Since w(0) = ϕ0

z (x0,z0) < 0, then (18) implies that w(t)→−∞ in finite time, since

w(t)≤ w(0)
1+ kw(0)t

.

Remarks: 1. The conditions of the theorem relate to the orientation of contours of ϕ initially. Under these conditions,
a larger concentration of smaller particles lies below and to the right of a mixture with a higher concentration of larger
particles. As the sample is sheared, the large particles migrate upwards, and smaller particles downwards, thereby
narrowing the spread of contours, eventually forming a sharp interface across which the particle concentrations jump.

2. If w(0) = ϕ0
z (x0,z0) > 0, then the dynamics are somewhat more complicated, with the contours of ϕ rolling over

as w(t) = ϕz changes sign. Once this happens, the conditions of the theorem are satisfied, and a shock forms. However,
to prove this rigorously, we would need to establish that w(t∗) < 0 for some finite time t = t∗, in order to show that
w(t)→−∞. The evolution of w(t) is controlled by v(t) :

dw
dt

<−u′(z)v. (19)



Now, u′(z)≥ k0 = min−1≤z≤1 u′(z) > 0. Provided v(t) > 0 is bounded away from v = 0, then w(t) crosses the v-axis
in finite time.

3. In the simpler case of the original Gray-Thornton model, in which u(z) is linear, S(z) is constant, and f (ϕ) =
ϕ(ϕ−1), system (14) simplifies considerably. Solutions ϕ are constant on characteristics, and the various terms that
are now constants rather than variable can be eliminated from the equations by scaling, leaving the system

dv
dt

=−2vw (20a)

dw
dt

=−v−2w2. (20b)

Somewhat surprisingly, this system can be solved explicitly:

v(t) =
v0

q(t)
, w(t) =

w0− v0t
q(t)

, q(t) = 1+2w0t− v0t2, (21)

where v(0) = v0,w(0) = w0. Consequently, conditions for shock formation can be specified precisely, and the time at
which the shock forms can be expressed exactly in terms of the initial conditions [1]: shocks form if and only if q(t)
has a positive zero.

Shock breaking

Once a shock wave forms, it evolves according to the PDE (7), as discussed above. In this subsection, we show that
certain shocks lose stability, due to being sheared by the flow. To avoid the complicated problem of how the solution
evolves on either side of the shock, let’s simplify the issue. In fact, let’s take ϕ+ = 0,ϕ− = 1, so that the shock is
stable. Then G(ϕ+,ϕ−) = 0 in equation (7). Furthermore, if we take u(z) = z, the original form of the Gray-Thornton
model, then (7) becomes the inviscid Burgers equation [13] for the shock location z = ẑ(x, t):

ẑt + ẑẑx = 0. (22)

Now solutions of Burgers equation are known to break in finite time, unless they are monotonically increasing.
Consequently, any shock wave solution satisfying (22) will become vertical in finite time if ẑx < 0 anywhere, at
any time. This makes sense, because the interface is being sheared by the depth-dependent velocity. In the classical
theory of Burgers equation, the solution can be continued as a shock wave, but here, the solution itself is a shock, and
as it breaks, it loses stability because a middle section is now unstable: it has ϕ+ < ϕ−, but because the section has
turned over, ϕ = ϕ+ = 0 below the shock, and ϕ = ϕ− = 1 above the shock. (See Theorem 1.)
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FIGURE 1. Solutions of (1), with u(z) = z and initial condition (23). (a) Initial condition. (b) Evolved shock showing unstable
section. (c) Solution with rarefaction wave, t < 1/12.

The solution is in fact continued using the method of characteristics to introduce a rarefaction wave, corresponding
to a mixing zone. Consider an initial condition

ϕ(x,z,0) =
{

1, x <−z3,
0, x >−z3.

(23)



in which the interface x =−z3 is already vertical at z = 0 in the initial condition. Then to see the shock breaking, it is
convenient to consider the parameterization of the shock by z rather than x: x = x̂(z, t) =−z3 +zt satisfies the evolution
equation for x̂ :

x̂t + zx̂z = 0. (24)

Then for t > 0, x̂(z, t) is non-monotonic; it is increasing between z =±
√

t
3 , the unstable section of the evolved shock

wave, and decreasing outside this interval. The solution with a rarefaction wave is valid for t < 1
12 , and is shown

in Fig. 1. Beyond t = 1
12 , the solution becomes more complicated, but can be calculated with a simple numerical

algorithm, as described in a forthcoming paper [1].

EXPERIMENTS WITH A COUETTE CELL

Experiments were conducted in an annular Couette cell, in which a mixture of small and large particles were sheared
between concentric vertical cylinders. Here, we summarize results that will appear in a pair of papers [6, 7]. The
experimental setup and protocol are described in detail in [2]. A bottom confining plate is rotated at constant frequency
f = 49±0.5 mHz, approximately 3 rpm, and a top plate exerts a controlled pressure on the particles (0.36±0.008)mg,
where mg is the total weight of the particles and the variation in force is due to the stretching of springs partially
supporting the plate. The top plate is free to move vertically, thereby accommodating dilation and consolidation.
Experiments reported here were carried out with particles that are spherical glass beads, of diameters 3 mm and 6 mm.
Different size ratios, and variations in other experimental conditions are described in [2].

The apparatus allows us to compare quantitatively predictions of the Gray-Thornton model with experimental data.
We find that the model captures the gross behavior of mixing and segregation as the material is sheared, even though it
cannot reproduce significant features of the flow. To reflect conditions in the experiments, we make several assumptions
concerning the model. First, we assume that, although mixing and segregation involve three-dimensional motion of
particles, we consider solutions that depend only on the vertical variable z. This assumption is reflected in the initial
configurations chosen for the experiments, in which a layer of small particles is placed above a layer of large particles.
Second, we assume that the segregation rate is proportional to the shear rate, reflecting the notion that there should be
more segregation when the sample is sheared faster. As the particles mix, they occupy significantly less volume, so that
the top plate falls slightly. Later, as the mixture resegregates, they begin to occupy more volume, and the top plate rises.
We assume that the degree of segregation is measured by the position of the top plate. The connection between model
solutions and the experiments can be provided by a mapping between local concentration and the packing density.

In the experiment, we take two types of measurements. From high speed images we extract particle trajectories,
which lead to an average velocity profile u(z) that is roughly independent of time and ϕ. The second measurement is
to record the position H(t) of the top plate as a function of time t.
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FIGURE 2. (a) Measured velocity profile u(z) (•) in the region 0 ≤ z ≤ 1, showing the exponential fit to the shear rate data in
(b). Velocities are scaled so that u(0) = 1. (b) Shear rate γ̇ = |du/dz| within the region 0 ≤ z ≤ 1. The solid line is the fit to an
exponential function.



Fig. 2(a) summarizes averaged velocity data, and a fit by an exponential function u(z). The horizontal bars indicate
the spread of the data, using the width of a parabolic fit at half height. In Fig. 2(b), we show the corresponding shear
rate plot and fit by the exponential function |u′(z)|. Near the top (resp. bottom) of the cell, a layer of large (resp.
small) particles forms quickly, creating an effective boundary. Consequently, the velocity profile and shear rate are
determined from data in the middle section shown in the figure, normalized to 0 ≤ z ≤ 1. It is worth noting that the
shear rate γ̇ is non-zero everywhere, establishing that the material is in a fluid-like flowing state at all times, even away
from the rotating lower boundary. The exponential shear rate is used in solving the initial value problem

ϕt + s(u′(z)ϕ(1−ϕ))z = 0, 0 < z < 1, t > 0

ϕ(z,0) =
{

0, 0 < z < 0.5
1, 0.5 < z < 1,

(25)

with boundary conditions ϕ(0, t) = 1,ϕ(1, t) = 0. As mentioned earlier, the segregation parameter s > 0 sets the time
scale for the evolution.
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FIGURE 3. The experimentally-measured position H(t) of the top plate and the calculated height h(t) of the sample.

In Fig. 3 we show the time series of the position H(t), together with the result of solving the mathematical initial
value problem (25) with exponential shear rate given by fitting the experimental data. Note that the sample initially
dilates, as particles start to slide and roll over each other from the initially static configuration. This Reynolds dilatancy
occurs on a timescale of about 10 seconds, whereas mixing and segregation occur on a much longer timescale, roughly
100 seconds and 600 seconds, respectively. Since the Gray-Thornton model is not designed to account for the initial
transient dilatancy, and the timescales are well separated, we ignore this feature of the experimental time series.

The mathematical solution ϕ(z, t) of (25) is the concentration of small particles on a fixed domain 0 < z < 1. At each
time, the spatial variation of ϕ(z, t) represents a certain volume of the sample, depending on how the local packing
depends on the mix of small and large particles. To extract the physical volume from ϕ(z, t), we employ a packing
density map ρ(ϕ), based on results from MD simulations and experiments with static packings [5]. The packing
density allows us to convert the local small particle concentration into a local effective volume. We integrate the local
effective volume over the fixed domain 0 ≤ z ≤ 1 to get the total effective volume of the sample at each time. Since
the cross-sectional area of the apparatus is constant, and the initial volume of particles is known, the effective volume
generates a height function h(t), which we refer to as the calculated height, shown in Fig. 3. It is this height h(t) that is
to be compared to the measured position H(t) of the top plate. Details of the conversion from ϕ(z, t) to h(t) are given
in [6].

Both model and experiment exhibit a faster rate for mixing than for segregation, and are in rough qualitative
agreement on those rates once the timescale parameter s is set. Two key differences are apparent in Fig. 3: the



resegregation is delayed in the model, and the model predicts complete resegregation in finite time (700 secs. in
the figure). Nonetheless, the agreement between model and experiment is remarkable considering that we are using a
simple continuum model for a small scale granular system. However, the model naturally fails to capture short-time
dilatancy, finite size effects, or three-dimensional effects.
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