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Abstract. We describe experiments on monodisperse spherical particles in
an annular cell geometry, vibrated from below and sheared from above. This
system shows a freezing/melting transition such that under sufficient vibration
a crystallized state is observed, which can be melted by sufficient shear. We
characterize the hysteretic transition between these two states, and observe
features reminiscent of both a jamming transition and critical phenomena.
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1. Introduction

Granular materials exhibit phases analogous to conventional solids, liquids, and gases,
in spite of being athermal and dissipative [1]. Due to the dissipation, energy must be
supplied in order to sustain a dynamical state. Shearing and vibration are two common
means to inject energy into granular systems. Shearing a granular material can compact
and crystallize it [2], but also melt it [3]; tapping will compact it [4]; in thin vibrated layers
there can be coexistence of crystallized and disordered states [5]; and highly vibrated
granular systems become gas-like. From a large phase space of variables we vary only
two, the shear rate and vibration amplitude, and study the interaction of the two energy
injection mechanisms.

Without vibration, sheared granular materials undergo a phase transition from solid-
like to fluid-like behaviour: the particles must become unjammed (which typically involves
dilation) before they can move. We seek to understand what effects vibrations have on
such transitions, and on the characteristics of the states on either side of the transition.
This is particularly interesting given that granular systems are athermal, and one might
naively expect that vibrations would play a temperature-like role.

We perform experiments in a classic geometry, annular shear flow [6]–[9], with
monodisperse particles, shown schematically in figure 1. Shear and vibration provide
competing effects, with the system evolving to a crystallized state when the kinetic energy
provided by the vibration is greater than that provided by the shear. The transition
is hysteretic, and fluctuations in the packing fraction and the breadth of the force
distribution both become large as the crystallized state is approached, in similarity to
phase transitions in other systems.

The physical parameters that characterize the system include the amplitude A and
frequency f of vibration, the height h and mean radius r of the annular container, the
diameter d and the density ρ of the particles, the rotation rate Ω of the upper shearing
surface, and the mean pressure P on the layer (here characterized at the base of the layer).
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Figure 1. Schematic cross-section of experiment (not to scale).

Table 1. Dimensionless ratios, with ω ≡ 2πf , γ̇ ≡ Ωr/h, and c ≡
√

P/ρ.

Γ
Aω2

g
vibrational acceleration/gravitational acceleration

H
h

d
cell height/particle size

I
γ̇d

c
particle scale velocity/acoustic velocity

J
Ωr

Aω
apparatus scale velocity/vibration velocity

K
Aω

c
vibration velocity/acoustic velocity

L
A

d
vibration length scale/particle length scale

M
γ̇

ω
vibration timescale/shear timescale

N
P

ρgd
applied pressure/hydrostatic pressure

R
r

d
cell radius/particle diameter

Ω̃
Ωr√
gd

shear velocity/particle velocity

From these physical parameters, it is possible to define other dimensioned parameters, such
as the shear rate, γ̇ = Ωr/h, as well as a number of dimensionless parameters which we
list in table 1.

Γ, I and J are three key parameters from the list in table 1. Of the ten listed, there
are only seven independent parameters: for example, Γ = K2N/L and the four velocity
ratios (H, I, J, K) only represent three parameters. In the experiments described here, we
have fixed f , P , and N and therefore only explored a small region of the available phase
space.
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Figure 2. Sample images, viewed from outer wall. (a) Crystallized state: Γ = 2.0
and Ω̃ = 0.078. (See also movie cryst.mpg.) (b) Disordered state: Γ = 2.0 and
Ω̃ = 0.47. Linear (L) and hexagonal (H) clusters marked by black boxes. (See
also movie disord.mpg.) (c) Phase diagram for crystallized and disordered states
as a function of Ω̃ and Γ. Dashed line is J = 1. Adapted from [3].

2. Experiment

The experimental apparatus consists of an annular region containing nearly monodisperse
polypropylene spheres of diameter d = 2.29–2.39 mm and density ρ = 0.90 g cm−3, as
shown in figure 1, with the pressure P and volume V (height h) set from below by a spring
within an electromagnetic shaker. The particles are sheared from above and vibrated
from below, while the sidewalls are stationary. The boundary conditions for the shaker-
controlled bottom plate allow for dilation of the system under shear, with fast vibrations
(A = 0 to 0.2d) superimposed upon slow dilation (maximum ∼0.5d). The bottom plate
surface is smooth aluminium, and the top plate has a disordered layer of glued particles.
A more detailed description of the apparatus is given in [3]. To characterize the states,
we obtain high-speed video images of particles at the outer Plexiglas wall, laser position
measurements of the bottom plate (cell volume), and force time series from a capacitive
sensor flush with the bottom plate. For the experiments described in this paper, we fix
the frequency of vibration (f = 60 Hz) and number of particles (N ≈ 71 200), and vary
the amplitude of vibration A and shear rate Ω. We vary the nondimensionalized peak
acceleration Γ ≡ A(2πf)2/g from 0 to 6, and the nondimensional shear rate Ω̃ ≡ Ωr/

√
gd

from 0.058 to 9.3.

3. Description of states

In the regime 0 < Ω̃ < 10 and 0 < Γ < 6 we observe two distinct granular states of
matter: crystallized and disordered. Sample images and movies of these two states are
shown in figures 2(a) and (b), as viewed from the outer wall. For Ω̃ � 1 and Γ < 4, we
observe that the phase boundary between the two states roughly corresponds to a curve
where the characteristic velocities of the two motions are equal. This corresponds to the
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Figure 3. Force probability distribution functions for three values of Ω̃ at Γ = 2.0:
(a) on linear scales, dimensioned and (b) on log-linear scales, normalized by mean
force. See figure 6 for the dependence of 〈F 〉 on Ω̃.

dimensionless number J of table 1:

J ≡ Ωr

2πfA
(1)

and the curve J = 1 is shown by the dashed line in figure 2(c). Below, we characterize
these two states, with further details to be found in [3].

Crystallized state. In the solid-like state (see figure 2(a)), the balls crystallize into a
hexagonally close-packed (HCP) configuration (i.e. a 3D crystalline structure) here visible
only at the outer wall although the order persists throughout. We observe a packing
fraction φ = 0.69, which is lower than φHCP = 0.74 due to defects, the curved geometry,
and error in the measurement of ball and cell dimensions. The contact between the upper
layer of the granular material and the shearing wheel is intermittent, with stick–slip motion
of the top ∼2 layers in the manner of [10]. The distribution of forces measured at the
bottom of the layer is bimodal (see figure 3); while there is some asymmetry in the two
peaks, this indicates that the material is largely responding as a solid body moving up
and down with the sinusoidal vibrations of the bottom plate.

Disordered state. In the disordered state, some order remains in the form of
hexagonally packed clusters and linear chains of particles at the outer wall, as marked
in figure 2(b). For states with Ω well above the transition, linear chains dominate over
hexagonal clusters, with both existing intermittently throughout the disordered regime.
These chains may correspond to the planar ordering reported recently by Tsai et al [2, 11].
The velocity profile extends deeper into the layer (in the vertical direction) than in the
crystallized state. Force distributions measured at the bottom plate show the exponential-
like tails characteristic of many granular experiments in disordered, unvibrated granular
materials (see figure 3). They also fall to zero at low force, as seen in earlier experiments
by Miller et al [7].

For a geometrically similar system, but unvibrated, with rough lower surface, and
exposed to a compressional force, shear ordered the system into horizontal planes of
hexagonal packing, each slipping past the others [2, 11]. Such a state is different from
the 3D crystallized state observed here, in which the layers in the bulk are stationary
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with respect to each other. An interesting question is how shearing creates order or
disorder depending on the presence or absence of vibration. A useful way to distinguish
the ordered and disordered regimes is via the ratio

I ≡ γ̇d
√

P/ρ
(2)

involving the shear timescale γ̇ ≡ Ωr/h to the acoustic timescale,
√

d2ρ/P , calculated
from the pressure P and density ρ [12]. The experiments described in this paper have
pressures of around P = 20 Pa and shear rates of γ̇ = 0.3–40 Hz, leading to I = 5× 10−3

to 0.75. In [2], the shear rates are slower, γ̇ = 0.05–0.5 Hz, and pressures are higher,
P = 2000 Pa, so that the system is clearly in the quasistatic regime with I = 3× 10−5 to
3 × 10−4.

While it is perhaps surprising that we find as simple a result as a phase transition
at J ≈ 1, the presence of these other important control parameters give hints into the
breakdown of crystallization for large Γ. Figure 2(c) shows that for Ω̃ ≈ 0.7, crystallization
was not observed above Γ = 4, possibly indicating the re-emergence of disorder due to
granular-gas-like behaviour. Further experiments varying (L, M, N) will be necessary
to discover which of these determine the high-Γ boundary of the crystallized phase. In
addition, the parameter H controls finite size effects.

4. Shear localization

Granular materials commonly exhibit shear banding, with an exponentially decaying
velocity profile away from the shearing surface. As shown in figure 4(a), this shear band
behaviour is seen in both the crystallized (Ω̃ = 0.087) and disordered states (Ω̃ = 0.87)
for Γ = 2.0. To obtain the velocity profiles, we tracked individual particles visible at the
outer wall using a high-speed video camera and determined trajectories for each. We then
binned the resulting velocity components by depth to construct velocity profiles.

We characterize the azimuthal velocity, v(y), by fitting the profile to the form

v(y) = v∞ + α v‖ e−y/y0 (3)

where v∞ is the shear-induced sliding velocity at the bottom plate, v‖ is the known
azimuthal velocity of the shear wheel at the outer wall, α is the efficiency with which that
velocity is transmitted to the top layer of granular material, and y0 is the decay length of
the velocity with depth y.

In the crystallized state, the shear is localized almost entirely to the first layer of
particles (small y0), while in the disordered state the shear band extends several particles
into the layer. The slip at the upper plate is lowest in the disordered state, where the
uppermost particles are in constant contact with the shearing wheel. Note that the system
is more dilated in the disordered state, and has a larger pressure [3]. While the disordered
state has greater slip (v∞) at the bottom plate, the scaled slip values (v∞/v‖) are in
fact lower than in the crystallized state, visible in figure 4(a). For disordered states
with Ω̃ � 0.4, the shear bands appear to have reached a steady state since they are all
parameterized by the same values.
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Figure 4. Characterization of velocity profiles at Γ = 2.0 and various Ω̃. (a)
Azimuthal velocity measured at outer wall as a function of depth measured. Lines
are fits to equation (3). (b) Solid body rotation v∞ as a function of Ω̃, (c) decay
length y0 as a function of Ω̃ and (d) efficiency coefficient α as a function of Ω̃.

5. Transition

We examined the transition from the disordered to the crystallized state by first preparing
a disordered state at high Ω̃, then adjusting Ω̃ to the value of interest. We then performed
two runs, one at constant Ω̃ = 0.27 (starting from Γ = 0) and the other at constant Γ = 2
(starting from Ω̃ = 8.4). The mean volume measured for each step of these two runs
is shown in figure 5. Γ was held approximately constant by fixing the amplitude of the
signal driving the shaker. As can be seen in figure 2(c), the resulting vibration amplitude
varied less than 5% based on the state of the material.

For steps of decreasing Ω (figure 5(a)) the system compacts logarithmically until
reaching Ωc, after which the system undergoes a first-order phase transition to the
crystallized state. While the discontinuity corresponds to only a 1% change in the volume
of the cell, this represents 20% of the overall change observed. Below Ωc only a small
amount of additional compaction occurs, to a state with a volume Vmin, for which the
packing fraction is φ = 0.69. When Ω is increased, the transition back to the disordered
state is hysteretic, occurring for Ωh ≈ 2Ωc.

For steps of increasing Γ (figure 5(b)) the system also compacts. However, runs
approaching the transition are difficult to repeat quantitatively, since there is a great deal
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Figure 5. Volume V of cell, scaled by minimum observed volume Vmin as a
function of (a) Ω̃ (at Γ = 2.0) and (b) Γ (at Ω̃ = 0.27). Triangles point in
direction of steps.

of intermittency in the cell volume (see figures 5(b), 8(a) and [3] for details). For Γ > Γc

the system is in the crystallized state. The transition also appears to be first order, but
in this case the hysteresis is so extreme that the material was not observed to re-expand
when we decreased Γ.

We wish to understand why a crystallized state can disorder by increasing Ω, but
not by decreasing Γ. In the case of increasing Ω, the stick–slip behaviour in the top
layers of the crystallized state is affected by the speed of the upper shearing wheel. As
Ω increases, more horizontal momentum is transferred to the upper layer of balls, which
results in longer regions of flowing particles. Eventually, the whole layer can be seen
to mobilize and the disordering begins to take place throughout the cell. In contrast,
for increases in A (and hence Γ) no such increased momentum transfer takes place, and
the results are similar to the irreversibility observed for compaction by tapping [4]. This
transition shows some similarity to the ‘freezing-by-heating’ transition seen in [13], in
which individual particles with tunable noise are seen to crystallize as their noise level is
increased. Such a system also shows hysteresis in returning to the disordered, mobilized
state.

For the run at Γ = 2.0, seen in figure 5(a) with steps downward in Ω, we observe
signatures of the phase transition from disorder to crystallization via both the volume
fluctuations and the force distribution, as shown in figures 6 and 7. As Ω → Ωc from above,
both the volume fluctuations (measured from the variance of V (t)) and the breadth of
the force distribution (measured by the kurtosis, or fourth scaled moment, of F (t) on the
force sensor) become large. In addition, the first-order nature of the transition is visible
in other characteristics of the force distribution, such as the mean, standard deviation,
and skewness (see also figure 3).

In granular systems, Edwards and co-workers [14] have introduced a temperature-like
measure, the compactivity, defined as X = (∂V/∂S)N by analogy with thermodynamics.
The central idea is that lower packing fractions correspond to a greater freedom for particle
rearrangement, and hence a higher compactivity. In the statistical mechanics of ordinary
second-order phase transitions, susceptibilities such as (∂2A/∂T 2)V (for free energy A)
are singular at the critical point. For example, the specific heat at constant volume is
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Figure 6. Characteristics of force probability distributions as a function of Ω̃ at
Γ = 2.0. Triangles point in direction of steps in Ω̃; solid points are crystallized
phase; the dashed line is a guide to the eye.

CV = (∂E/∂T )V = −T (∂2A/∂T 2)V . When described in terms of fluctuation–dissipation
relations, kBT 2CV = 〈(E − E0)

2〉, where E is the energy of the system and E0 its mean
value. One expects energy fluctuations, and hence CV , to be singular at the critical
temperature Tc. By contrast, at a first-order transition, discontinuities occur in densities,
but one does not expect divergent fluctuations. Since V has taken the place of E in the
Edwards formalism, the hallmark of a critical transition is increased fluctuations in the
volume of the system as we approach Xc, the critical compactivity. In our experiments,
volume (and hence X) is set by Ω, and the inset to figure 7 shows apparently singular
behaviour for the volume fluctuations as a function of the volume. It is interesting that,
in these experiments, we see a discontinuity in the density but also an indication of
a singularity in the volume (density) fluctuations. The magnitude of the fluctuations
observed in the disordered state is similar to those in observed in [15], where the standard
deviation of the packing fraction is approximately 10−4.

6. Intermittency

The apparently singular volume fluctuations near J = 1 come from the fact that the
system exhibits intermittency in its state. The system is in fact spatially inhomogeneous,
with instances of small V being crystallized in the majority of the cell and instances of
large V being majority disordered. By examining the properties of the system in this
intermittent regime, we are able to compare a broad range of states for nearly the same
parameter values. The only varying parameters are the volume and pressure of the system,
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Figure 8. Characterization of velocity profiles in intermittent regime at Ω̃ = 0.27
and Γ = 1.0. (a) Azimuthal velocity measured at outer wall as a function of depth
measured for compact (◦ , t = 3.8 h) and dilated (	
, t = 4.7 h) states. Lines
are fits to equation (3). (b) Solid body rotation v∞ as a function of cell height,
(c) decay length y0 as a function of cell height and (d) efficiency coefficient α as
a function of cell height. Solid symbols correspond to data from (a).
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which are related to each other by a proportionality constant due to the spring constant
of the shaker [3].

The inset to figure 8(a) shows a time series of the cell height for such a run, with
Γ = 1.0 and Ω̃ = 0.27. The system started from a dilated state and progressed
to a majority crystallized state before re-dilating and re-compacting to an even more
crystallized state over the course of approximately 10 h. We again obtain velocity profiles
at the outer wall, in this case while simultaneously monitoring the position of the bottom
plate.

Figure 8(a) shows two velocity profiles from compact and dilated states. Because the
system is spatially inhomogeneous, the particles in view of the camera may in fact be
either disordered or crystallized at any given time during these measurements, regardless
of the height of the cell. Importantly, the fit parameters in figures 8(b)–(d) show the same
trends as those in figure 4 when the rotation rate Ω̃ is taken as a proxy for cell height. In
both cases, we observe a continuum of states as the system moves between crystallization
(compaction) and disorder (dilation). Again, it is interesting to note that the volume and
pressure fluctuations are associated with the formation and melting of ordered clusters
over time. Such behaviour is characteristic of near-critical behaviour. By contrast, at
a thermodynamic first-order transition, we would not expect to see persistent dominant
fluctuations.

7. Discussion

The two characterizations of a transition in the system we discuss above provide
contrasting, but complementary, information about the nature of the crystallizing phase
transition in sheared and vibrated granular materials. The canonical hallmark of a
transition to a jammed/glassy state is the continuous growth of the viscosity. Glass
transitions do not in general contain first-order-like signatures, such as discontinuities in
the volume or specific heat [16]. For sheared colloids, there are large stress fluctuations
near a jamming transition [17], and in simulations of Lennard-Jones particles, force PDFs
are observed to broaden [18, 19]. Similar behaviour is observed in this system as well, but
with a density discontinuity. By contrast, jammed/glassy states are all disordered, while
the granular system described in this paper makes a transition to a crystallized state. In
both the glassy and crystallized cases, however, the final states are unable to rearrange.

We observe similarities to critical phenomena in the increased volume fluctuations
near the transition, a hallmark at odds with a glass transition. These fluctuations
are similar to the density fluctuations observed at the liquid–gas critical point, which
occur at diverging length scales. Therefore, further investigations into the nature of this
transition should examine what length scales and order parameters are present, including
a determination of the sizes of clusters and the spatial correlations between forces. Finally,
we have introduced a number of dimensionless control parameters whose effects remain
to be investigated in future studies.
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