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Defect Turbulence in Inclined Layer Convection
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We report experimental results on the defect turbulent state of undulation chaos in inclined layer
convection of a fluid with Prandtl number �1. By measuring defect density and undulation wave number,
we find that the onset of undulation chaos coincides with the theoretically predicted onset for stable,
stationary undulations. At stronger driving, we observe a competition between ordered undulations and
undulation chaos, suggesting bistability between a fixed-point attractor and spatiotemporal chaos. In the
defect turbulent regime, we measured the defect creation, annihilation, entering, leaving, and rates. We
derive a universal probability distribution function which agrees with the experimental findings.
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Weakly driven, dissipative pattern-forming systems of-
ten exhibit the spatiotemporally chaotic state of defect tur-
bulence, where the dynamics of a pattern is dominated by
the perpetual nucleation, motion, and annihilation of point
defects (or dislocations) [1]. Examples can be found within
striped patterns in wind driven sand, electroconvection in
liquid crystals [2], nonlinear optics [3], fluid convection
[4,5], autocatalytic chemical reactions [6], and Langmuir
circulation in the oceans [7]. The hope is that the dynam-
ics of these very different systems can be characterized by
a universal description which is based only on the defect
dynamics.

A first description of defect turbulence was given by Gil
et al. [8] for a spatiotemporally chaotic state of the com-
plex Ginzburg-Landau equation (CGLE). They postulated
that the nucleation rate for defect pairs is independent of
the number of pairs M, and based on the topological na-
ture of defects the annihilation rate is proportional to M2.
Through detailed balance, they showed that these assump-
tions lead to a squared Poisson distribution for the proba-
bility distribution function (PDF) of M. They also found
agreement with this PDF in simulations of the CGLE with
periodic boundary conditions. Rehberg et al. [2] measured
the PDF of M for defect turbulence in electroconvection of
nematic liquid crystals and found it to be consistent with
the predicted squared Poisson distribution. Later, Ramazza
et al. [3] investigated a defect turbulent state in optical pat-
terns and found that their data were not conclusive. To
date, studies in both simulation and experiment have relied
purely on comparisons of the PDFs. The gain and loss
rates, fundamental to the universal description of defect
turbulence, have not been measured. In addition, effects
due to boundaries were not considered.

In this Letter, we report experimental results on the de-
fect turbulent state of undulation chaos in inclined layer
convection of a fluid of Prandtl number �1. By track-
ing all defects in a finite area of the convection cell we
measured, for the first time, defect creation, annihilation,
leaving, and entering rates for a defect turbulent state. The
0031-9007�02�88(3)�034501(4)$20.00
observed pair creation and annihilation rates agree with the
predictions [8]. In an experimental system where periodic
boundary conditions do not apply, pairs of defects are no
longer an appropriate description. To describe the statistics
correctly, single defect leaving and entering rates through
the boundaries must be considered. Our data show that the
entering rates are approximately independent of the num-
ber of positive/negative defects N6 and the leaving rates
are proportional to N6. We derive a universal PDF which
reduces to the earlier predicted squared Poisson distribu-
tion [8] when boundary effects are negligible. Our mea-
surements agree with this new distribution. In addition, by
measuring both N6 and the undulation wave number we
determined that the onset of undulation chaos coincides
with the theoretically predicted onset for stable, stationary
undulations. At higher driving, we observe competition
between regions of ordered undulations and undulation
chaos, suggesting bistability between a fixed-point attrac-
tor and spatiotemporal chaos.

When an inclined fluid layer (see Fig. 1) is heated from
below and cooled from above for small temperature differ-
ences DT the fluid layer experiences not only a linear tem-
perature gradient (as in Rayleigh-Bénard convection) but
also a symmetry-breaking large scale shear flow, with fluid
rising at the warmer plate and falling at the cooler plate
[9]. Above a critical temperature difference DTc, a pattern
of longitudinal rolls aligned with the uphill/downhill di-
rection is observed for intermediate inclination angles. For
e * 0.02, where e � DT�DTc 2 1, these longitudinal
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FIG. 1. Schematic drawing of inclined layer convection of cell
thickness d and temperature difference DT � Thot 2 Tcold.
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rolls are unstable to undulations [9,10]. While it was pre-
dicted theoretically that a perfect pattern of undulations is
stable [11], a defect turbulent state of undulation chaos was
found experimentally [12]. Recently, undulation chaos
was also observed in numerical simulations of the Navier-
Stokes equations when random initial conditions were
used [11], while with controlled initial conditions undula-
tions were found to be stable. As shown in the snapshot
in Fig. 2a, undulation chaos is characterized by a pattern
of disordered undulating rolls, punctuated by point defects
which carry a topological charge of 62p [15]. Defects are
nucleated pairwise in regions of low convective amplitude
(green), enter and leave the system at the boundaries,
preferentially move at right angles to the rolls, and annihi-
late as pairs. For e * 0.10, the defect turbulent state ap-
pears intermittently with ordered regions of undulations,
suggesting a competition between the fixed-point attractor
(undulations) and spatiotemporal chaos (undulation chaos).
This is shown by the two snapshots in Figs. 2b and 2c. The
dynamics of the state is best viewed in the movies avail-
able at Ref. [13].

The experiments were conducted in the same apparatus
as in Ref. [12] for an inclination angle of u � 30±. The
fluid was compressed CO2 at a pressure of �56.5 6
0.01� bar regulated to 60.005 bar with a mean tem-
perature of �28 6 0.05� ±C regulated to 60.0003 ±C. For
these parameters, convection appeared at DTc � �1.763 6

0.005� ±C. The planform of the convection pattern was
observed by the usual shadowgraph technique [16]. A cell
of height d � �388 6 2� mm and dimensions 101d 3

50d was used, for which the vertical diffusion time was
ty � 1.3 sec. All data were measured in a homogeneous
central subregion of size 32d 3 25d [17]. To track de-
fects, runs of 100 shadowgraph images were taken at a
rate of 3 frames�sec (�ty�4) with a 1008 3 1018 pixel
digital CCD camera. For 17 values of e between 0.04
and 0.22 this was repeated for 600 (500, 400) runs at
e # 0.07 (0.08 # e # 0.10, e $ 0.12). Runs at the same
e were separated by at least 100ty for statistical inde-

FIG. 2 (color). False color images of undulation chaos [13] at
u � 30±. Red/blue is the rising/falling fluid and green is the
low-amplitude convection. The uphill direction is at the top of
the page, and the region shown is the subregion of the cell used
in the analysis. Positive defects point uphill, negative defects
downhill, and the pattern drifts downward [14] with a period
�150ty . (a) e � 0.08; (b) e � 0.17; (c) e � 0.17.
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pendence. A total of 1.5 terabytes of data were analyzed.
Each value of e was reached via a quasistatic temperature
increase in steps of 0.001 ±C, waiting 700ty between steps
for transients to die out. We also conducted a sequence of
measurements with quasistatic temperature decreases to
check for possible hysteresis, which was not observed.

To lowest order, the planform of undulation chaos can
be captured by the real part of the two-dimensional field
C�x, y� with

C � c0ei�qx1f� 1 ic1�ei�qx1py� 1 ei�qx2py�� 1 . . . ,
(1)

where the wave numbers q and p describe the stripe spac-
ing and waviness, respectively. Both the wave numbers and
the amplitudes c0 and c1 vary slowly in space and time.
For a perfect undulation pattern, f is constant everywhere,
while, for undulation chaos, f�x,y, t� approximates the
deformation of the pattern due to the defects. The ansatz
f�x,y, t� �

P
ci arctan� y2yi

x2xi
� describes the observed pat-

tern well for constant q, p, and c1�c0, where �xi , yi� are
the locations of defects and ci � 61 are their correspond-
ing topological charges.

In Fig. 3 the peak values for the distributions of p, q, and
c1�c0 are shown as a function of e [18]. The values for
q change little with e, while the undulation wave numbers
can be fit by p ~

p
e 2 eu, shown as a solid black line.

This fit provides a value for the onset of undulation chaos
at eu � 0.017 6 0.001, which is in good agreement with
eu � 0.016 predicted theoretically for the onset of stable
stationary undulations [11].

In order to better characterize the generic properties
of defect turbulence, we determined defect locations and
the corresponding topological charges in each shadow-
graph image. A time trace of the number of defects over
2 3 105ty at e � 0.13 (104 defects) revealed that the
undulation chaos state is statistically stationary and neu-
tral with respect to topological charge. Nonetheless, any
single realization of the pattern does not necessarily satisfy
N1 � N2 due to the boundaries. From the list of defect
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FIG. 3. (a) Roll wave number q and (b) undulation wave num-
ber p (black) with relative amplitude c1�c0 (gray), as a function
of e. Values are taken at the peaks of the PDF, with bars rep-
resenting the width of the distribution at one standard devia-
tion. Data taken while increasing the temperature are shown
with symbol � and, while decreasing the temperature, with �.
The dashed line represents the prediction for the onset from
Ref. [11].
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locations in each frame, we determined the mean �N6�
and the variance s2

6 � �N2
6� 2 �N6�2 in the chosen sub-

region, plotted in Fig. 4 as a function of e. Here and be-
low, we report results only for N1; equivalent results were
obtained for N2.

For e # 0.10, N6�e� is linearly increasing. Extrapola-
tion to N1 � 0 gives ed � 0.025 6 0.002, which is close
to the onset of undulations (eu � 0.017 6 0.001) deter-
mined above from wave number measurements. The dif-
ference may be attributable to the finite size of the system.
For e . 0.10, N6�e� decreases in the bistability regime,
while no such decrease is seen in p.

Two predicted generic features of defect turbulence [8]
are the constant creation rate and the annihilation rate
quadratic in the number of defect pairs M. By connecting
defect locations in adjacent frames to defect tracks, and
then associating tracks of opposite sign to locate creation
and annihilation events, we were able to perform the first
direct test of the theoretical postulates, as well as the en-
tering and leaving rates to/from the observation area. For
a system where single defects can enter and leave through
the boundaries a pair-based description is no longer justi-
fied. Thus, we separately consider the PDFs for N6.

The creation rate C was observed to be approximately
independent of N6 and the annihilation rate agreed with
A ~ N1N2, by extension from A ~ M2 for the topologi-
cally neutral case. Figure 5 shows the four gain/loss rates,
tabulated using positive defects and events only. To low-
est order, the entering rate is independent of the number
of defects already in the subregion of the cell, suggesting
that both creation and entering are random processes. The
leaving rate was found to increase in proportion to N6 as
expected, since unlike annihilations such events do not de-
pend on the presence of two oppositely charged defects.

The observed rates are approximately given by

E�N6� � E0 ,

C�N6� � C0 ,

L�N6� � L0N6 ,

A�N6� � A0N2
6 ,

(2)
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FIG. 4. Number of positive defects in the subregion as a func-
tion of e, with bars representing the width of the distribution at
one standard deviation.
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which consider defects of a single sign only. The fits corre-
sponding to Eqs. (2) are shown in Fig. 5, for three values
of e. It is important to note that this is a simplification.
C�N6� and E�N6� show a weak, negative slope: defects
are slightly less likely to enter or be created if there are al-
ready defects present. We also observe a weak dependence
of these rates on the number of oppositely charged defects:
E�N1� is slightly diminished and L�N1� is slightly ele-
vated for N1 . N2. Thus, to fully describe the system,
we would need to consider rates and distributions for both
N1 and N2 simultaneously. In order to make analytical
progress we will assume that Eqs. (2) are a complete de-
scription. As will be shown below, these assumptions ap-
proximate the data well.

Using Eqs. (2), we can construct the PDF for N � N6.
Assuming a stationary distribution, detailed balance re-
quires loss�N�P �N� � gain�N 2 1�P �N 2 1� to describe
the probabilities at adjacent N [19]. For the relevant rates,

P �N� �
E�N � 1 C�N�
L�N� 1 A�N�

P �N 2 1�

�
a

bN 1 N2 P �N 2 1� . (3)

where a � E01C0

A0
and b � L0

A0
. By performing the recur-

sion and properly normalizing the distribution, we find a
modified Poisson distribution

Pa,b�N � �
a�b�2�1N

Ib�2
p

a �G�1 1 b 1 N�N!
, (4)

where Ib is the modified Bessel function. For b � 0
(a � �N2�) this PDF reduces to the squared Poisson dis-
tribution of Ref. [8]. In our experiments, b � 3 [20].

Figure 6b shows that the squared Poisson and Poisson
distributions match the data poorly. Both the modified
Poisson distribution and a distribution obtained by per-
forming the recursion of Eq. (3) on the raw experimental
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FIG. 5. Probability of entering and of leaving, creation, and
annihilation (per 0.33 sec) as a function of N1 for several e.
Lines are fits to Eq. (2).
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FIG. 6. (a) Mean number of positive defects vs s2
1 for e be-

tween 0.04 and 0.10. The black symbols are experimental; the
gray symbols are from Eqs. (5) and (6); the dashed line is the
analytical relation for squared Poisson distribution [8]. (b) PDF
for 6 3 104 defects at e � 0.07, with four distributions shown
for comparison. 1 are the experimental distribution, the solid
line is modified Poisson, the dashed line is squared Poisson, the
dotted line is Poisson, and � are from the raw rates in Fig. 5.

data from Fig. 5 agree well with the experimental data.
The modified Poisson distribution also correctly captures
the mean and width of the PDF. Using the already nor-
malized modified Poisson distribution [Eq. (4)], we cal-
culate �N� �

P
NPa,b�N� and �N2� �

P
N 2Pa,b�N� and

obtain the analytic expressions

�N� �
p

a
Ib11�2

p
a �

Ib�2
p

a �
, (5)

�N2� �
p

a
Ib11�2

p
a � 1

p
a Ib12�2

p
a �

Ib�2
p

a �
. (6)

Again, the above equations reduce to the corresponding
equations for the squared Poisson distribution in the limit
b � 0. In Fig. 6a the dependence of the mean on the
variance is plotted for the raw data and the modified and
squared Poisson distributions. The modified Poisson dis-
tribution [Eq. (6)] shows excellent agreement, while the
squared Poisson distribution clearly fails to describe the
experimental data.

In summary, we find that the state of undulation chaos,
and not the fixed-point attractor to ordered undulations,
is selected above the predicted onset for undulations. At
higher driving, we find an apparent competition between
the two attractors.

Our result for the N dependence of the defect creation,
annihilation, leaving, and entering rates and the modified
Poisson [Eq. (4)] should be generic to any defect turbu-
lent system. We have found agreement with the theoreti-
cal predictions for creation and annihilation rates [8] and
have extended the analysis to the experimentally relevant
case of a finite system without periodic boundary condi-
034501-4
tions, where it is important to consider both positive and
negative defects (rather than pairs). Although we observed
weak fluctuations away from topological charge neutrality,
a description based purely on a single topological charge
was sufficient to describe the observed behavior.
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